PHYSICAL REVIEW E 75, 046306 (2007)

Breather generation in fully nonlinear models of a stratified fluid
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Nonlinear wave motion is studied in a symmetric, continuously stratified, smoothed three-layer fluid in the
framework of the fully nonlinear Euler equations under the Boussinesq approximation. The weakly nonlinear
limit is discussed in which the governing equations can be reduced to the fully integrable modified
Korteweg—de Vries equation. For some choices of the layer thicknesses the cubic nonlinear term is positive and
the modified Korteweg—de Vries equation has soliton and breather solutions. Using such a stratification, the
Euler equations are solved numerically using a sign-variable, initial disturbance. Breathers were generated for
several forms of the initial disturbance. The breathers have moderate amplitude and to a good approximation
can be described by the modified Korteweg—de Vries equation. As far as we know this is the first presentation
of a breather in numerical simulations using the full nonlinear Euler equations for a stratified fluid.
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I. INTRODUCTION

Solitary internal waves are an important part of nonlinear
wave motion in stratified fluids. In shallow water they can be
described to leading-order by the Korteweg—de Vries (KdV)
equation [1]. For certain stratifications—e.g., those with a
buoyancy frequency profile that is nearly symmetric about
middepth—the coefficient of quadratic nonlinearity can be
anomalously weak or equal to zero, necessitating the inclu-
sion of a cubic nonlinear term. This results in the extended
Korteweg—de Vries (eKdV), or Gardner, equation which for
rightward propagating waves has the form

d d >

E+cog+ang+alﬂ2a—:+,@a—g=0, (1)
where 7(x,?) is the wave function describing the vertical
displacement of an isopycnal, x is the horizontal coordinate,
and ¢ is time. All the coefficients are determined by integrals
involving the unperturbed density profile p(z) and shear flow
U(z). Their expressions were first obtained for two-layer
flow [2] and then for arbitrary (continuous or multilayer)
fluid stratifications and background currents [3-5]. The
Gardner equation is an integrable nonlinear evolution equa-
tion, and its multisoliton solutions can be found using mod-
ern techniques of nonlinear waves—e.g., the inverse scatter-
ing method, Hirota-Darboux transformation, etc. [6-9]. The
existence of steady-state solitary wave solutions in the
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framework of the full nonlinear Euler equations can be
proved using their reduction to the Dubreil-Jacotin-Long
equation for the stream function ¢(x,z) (e.g., [10,11]).

The nonlinear coefficients in Eq. (1) can have either sign,
depending on the fluid stratification, while the dispersive co-
efficient B is always positive [5,12,13]. When the cubic non-
linear coefficient «; is negative, soliton solutions of a single
polarity, with a»>0, exist with amplitudes between zero
and a maximum, limiting value. If a;>0, solitons of either
polarity exist. There is now no bound on the amplitude; how-
ever, those with a7<0 have a minimum amplitude. In ad-
dition there is a new type of solution, the breather, which, for
example, can exist in the gap between the zero and minimum
soliton amplitudes [14,15]. Breathers are periodically pulsat-
ing, or oscillating, isolated wave forms. Because they are not
waves of permanent form, demonstrating the existence of
fully nonlinear breathers is an extremely difficult task be-
cause there does not exist a reduction to more simplified
equations like the Dubreil-Jacotin-Long equation.

The present paper has the goal of demonstrating the exis-
tence of breathers in the framework of the full nonlinear
Euler equations. The Boussinesq approximation is used, as is
appropriate for small density variations. Weakly nonlinear
breather solutions are reviewed in Sec. II. In Sec. III the
nonlinear numerical model is presented. Results of the fully
nonlinear numerical simulations are presented in Sec. IV, and
in Sec. V we present our conclusions.

II. WEAKLY NONLINEAR BREATHERS IN A STRATIFIED
FLUID

One model stratification with a positive cubic nonlinear
coefficient in Eq. (1) is a three-layer stratification with upper
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and lower layers of equal thicknesses / and the same density
jump Ap across each interface. The total depth is denoted by
H, and rigid boundaries at the top and bottom are used. For
this symmetric stratification the quadratic nonlinear coeffi-
cient is zero and the Gardner equation reduces to the modi-
fied Korteweg—de Vries (mKdV) equation with coefficients
[12,13]

co= NghAplpy,

g ) )
"4 3) T\ )

Here p, is the reference density used in making the Bouss-
inesq approximation and g is the gravitational acceleration.
The cubic nonlinear coefficient «; is positive only if
h/H<9/26—i.e., if the two interfaces are sufficiently far
apart. Breather solutions of the mKdV equation are well
known (e.g., [16]). In dimensional form, in a reference frame
moving with the linear long-wave propagation speed c, they
are

4gH | cos ¢— (g/p)sin ¢ tanh 6
ﬂ(x,t) == 5 . 2 . 12 (3)
cosh 8| 1+ (g/p)~sin”¢ sinh“ 6
where the“carrier” ¢ and “envelope” 6 phases are
X t
=2p= +8p(p* - 34%) = + ¢,
b=2p7 +8p(p°=3¢°) 1+ @
0=2q~ +8q(3p° - )= + 6 (4)
= qL qop~—4q 7%

Here g and p are the spectral parameters in the associated
Ablowitz-Kaup-Newell-Segur scheme [16] which character-
ize the breather amplitude (height) and the number of indi-
vidual waves in the breather. ¢, and 6, are initial phases, and
the spatial and temporal scales of the breather,

:l1l6_ﬁ’ T=L31I6_B’ (5)
H 23] CYIH (23]

are functions of its amplitude and the coefficients of the
mKdV equation. The “group” velocity of the breather in a
reference frame moving with the linear long-wave speed ¢
is

2
Vgr= gale(qz_ 3p2) (6)

For large values of the parameter p the breather consists of
many individual waves and represents an envelope soliton
with amplitude 4gH propagating to the left. For small values
of p the breather consists of a pair of solitary like form
pulses of opposite polarities which oscillate. Its maximal ab-
solute value changes in time with absolute maximum equal
to 4gH. It propagates to the left if |¢| < V3 |p| and to the right
if

lg| <V3|p|. In the limiting case p—0, the speed of the
breather tends to the speed of a soliton with amplitude about
2qH.
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As mentioned above, the mKdV equation is an integrable
equation and the Cauchy problem can be solved using the
method of inverse scattering [16,17]. One of the analytical
solutions of the associated spectral problem for the sign-
variable rectangular-box initial conditions was obtained in
Clarke et al. [18] where it was compared with direct numeri-
cal simulation of the mKdV equation.

III. NONLINEAR NUMERICAL MODEL

To study fully nonlinear breathers a numerical model
based on the full nonlinear Euler equations under the Bouss-
inesq approximation is used [3]. The idealized model equa-
tions are

po(U,+ U-VU) =~ VP - pgk,
o+ ﬁ~€p=0,

V.U=0. (7)

These equations are solved in the vertical plane, so all physi-
cal fields are functions of x, z, and . Here p, is the reference

density, U=(u,w) is the velocity vector where u is the hori-
zontal velocity in the x direction and w is the vertical veloc-
ity in the z direction, V=(ﬁ—i,£) is the gradient operator, and
P and p are the fluid pressure and density, respectively. The
unperturbed density profile is a smoothed three-layer strati-

fication of the form

p —h
@=1—Aptanhz !
Po

-h
— Ap tanh %, (8)

where the nondimensional density jump across each pycno-
cline is Ap=0.005. The other variables are nondimensional-
ized using the water depth H as the length scale and the
buoyancy period 7=2m/N, as the time scale where N,
=V4Apg/H is the bulk buoyancy frequency. The thickness of
each transition layer is d=0.04. h; and h, are chosen to give
upper and lower layer thicknesses of 0.3 and an intermediate
layer thickness of 0.4. This gives a symmetric stratification
which is a continuous approximation of a three-layer fluid
with h/H=0.3, slightly less than 9/26. The bottom boundary
is at z=—1 with z increasing upward. A vertical resolution of
dz=0.005 and a horizontal resolution of dx=0.05 were used.
The initial condition has the form

p(x.2) =p(y), ©)

where the vertical Lagrangian variable y, which is the far
stream height of an isopycnal, is given implicitly by

2=y + LX) h(y). (10)

Here {(x) describes the initial horizontal structure and ¢(y)
is the mode-1 eigenfunction, obtained by solving the eigen-
value problem

046306-2



BREATHER GENERATION IN FULLY NONLINEAR MODELS...

0.0
-0.2} B
) —-0.6F B )
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W+Q%?¢=O, (11)

with boundary conditions ¢(—1)=¢(0)=0. The buoyancy
frequency is given by N*(y)=—(g/po)dp(y)/dy. The eigen-
value ¢, is the mode-1 linear long-wave propagation speed
which, in the three-layer limit, is given in Egs. (2). The hori-
zontal structure is chosen to be either a weakly nonlinear
breather, with ¢ given by Eq. (3), or in the form

_ 2 X 4f X
§(x)-a{25€ch (L) 3sech (L)}

The velocity field is initialized in terms of the vertical dis-
placement function v(x,z) defined such that the rest height of
the isopycnal passing through (x,z) is y=z—v(x,z), implic-
itly given by Eq. (10). For an exact fully nonlinear internal
solitary wave, the stream function in a reference frame mov-
ing with the wave is precisely —cv(x,z) and the correspond-
ing wave induced velocity field is (-cv.,cv,) where ¢ is the
propagation speed of the solitary wave [19]. Thus, we choose
to initialize the velocity field with (—cyv,,cov,) in our simu-
lations. The simulation is done in a reference frame moving
with speed ¢ to the left; thus, in initializing the velocity field
we take ¢, <O for a leftward-propagating wave. The result-
ing initial state is not an exact solution of the governing
equations; however, the initial density field satisfies all the
conditions for breather solutions in the framework of the
mKdV equation: it has zero mass and has a middle layer
whose thickness is independent of x. Even when ¢ is given
by Eq. (3), the initial velocity field does not correspond to
that of a weakly nonlinear breather, although it does satisfy
the condition of having zero horizontal velocity perturbation
in the middle layer.

(12)

IV. FULLY NONLINEAR BREATHER IN THE STRATIFIED
EULER EQUATIONS

The first case we consider is a simulation initialized using
Eq. (12) with (a,L)=(0.16,3). The initial disturbance, shown
in Fig. 1, is large. Consequently, the process of breather gen-
eration cannot be described in the framework of asymptotic
theory. The fully nonlinear breather that emerges from this
initial state is illustrated in Fig. 2 where the isopycnal dis-
placements are shown at various times. After 106 bulk buoy-
ancy periods the breather can be seen leading a mode-1 dis-
persive wave train, both of which are propagating leftward
with respect to the fluid. At later times the breather emerges
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FIG. 1. Initial state for the numerical simula-
tion in the reference frame in which fluid at in-
finity is at rest. Left panel: density contours.
Right panel: horizontal velocity field.

more clearly from the dispersive wave train. Its group veloc-
ity V,, is less than ¢, in magnitude, so it is advected by the
rightward background flow and never separates from the dis-
persive wave train. A Hovmiiller plot of the surface velocity
u(x,0,7) is shown in Fig. 3 clearly illustrating the pulsating
nature of the breather. The period of the oscillations and the
propagation speed of the breather (in this reference frame)
increase slightly at about =400 and thereafter remain fairly
constant. Nine full oscillations from the initial state can be
seen illustrating the stability of the breather.

The nondimensional coefficients of the mKdV equation
are ¢(p=2.36, B=1121, and «;=29.5. The amplitude of the
breather after =400, as defined by the maximum vertical
displacement of the center of the upper pycnocline, varies
between about 0.103 and 0.108. This gives a formal estima-
tion of the nonlinear parameter a, 7%/ c, which characterizes
the nonlinear correction to the linear speed of propagation, of
about 0.14 which is small but finite, suggesting that weakly
nonlinear theory may be applicable and that the mKdV equa-
tion can be used to describe the propagation of the observed
wave packets. Thus, the solution of the modified
Korteweg—de Vries equation is used for comparison with re-
sults of the numerical simulation of the Euler equations.

Figure 4 compares the simulated and theoretical breathers
at several times. To compare the fully nonlinear simulation
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FIG. 2. Density contours showing the evolving wave field. (a)
t=106. (b) t=317. (c) t=388. (d) t=458.

046306-3



LAMB et al.

X

FIG. 3. Hovmiiller plot of horizontal velocity perturbation at the
surface. Contoured values are for magnitudes 0.1-0.9 in steps of 0.1
and between 0.07 and 0.1 in steps of 0.01.

with weakly nonlinear theory the breather parameters p and
g must first be estimated. The value of g=—0.026 was deter-
mined from the maximum amplitude of the simulated
breather at a time when the breather was horizontally sym-
metric with downward displacement at its center [Fig. 4(a)].
The value p=0.0285 was then chosen so that the oscillation
periods of the fully nonlinear and weakly nonlinear breathers
were the same. Panels (a)—(e) compare the initial breathers
and their evolution every quarter of an oscillation period
7,5c =282 over one oscillation. Panel (f) compares the two
after two oscillation periods. The number of oscillations in
the breather, the width of the breather, and the amplitude of
the two maxima to either side of the breather center are cap-
tured quite well by the values of p and ¢ used, indicating that
the mKdV equation provides a reasonably accurate descrip-
tion of the waves. The theoretical breather travels with ve-
locity of —(cy—0.035) relative to the fluid [see Eq. (6)] while
the fully nonlinear breather travels with a slower velocity of
about —(¢,—0.052). This propagation speed can be estimated
from both Figs. 3 and 4. The difference in propagation
speeds suggests that higher-order effects are of some impor-
tance. The other significant difference is that while the theo-
retical breather is vertically symmetric, in the sense that after
half an oscillation period 7 is reversed in sign, this is not the
case for the simulated breather. The simulated breather has a
maximum downward displacement of about 0.1, and half an
oscillation period later it has a maximum upward displace-
ment of only 0.065 [Fig. 4(c)]. The two depressions to either
side of the central peak are also smaller in the simulated
breather. This is another indication that higher-order nonlin-
ear effects are important.

Breathers were also simulated by initializing the model
with a density field appropriate for weakly nonlinear breath-
ers using Eq. (3) instead of Eq. (12). After some adjustment
the final breather was similar to the initial one. For example,
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FIG. 4. Comparison of the vertical displacement of the upper
pycnocline in the fully nonlinear breather (solid) and the weakly
nonlinear breather (dots) at six different times. (a) t=1,=796.6. (b)
1=867.1=1y+0.257,,. (c) t=937.6=1,+0.57,,. (d) t=1008.1=1,
+0.757,5.. (e) 1=1078.6=1y+ 7,5 (f) 1=1353.5~1y+27,,. Here
T,sc=282 is the breather oscillation period.

for an initial weakly nonlinear breather with (p,q)
=(0.0285,-0.026), the same values as the simulated breather
shown in Figs. 2-4, the final breather had values of (p,q)
=(0.0272,-0.022). Breathers with multiple oscillations were
also simulated. An example, initialized with (p,q)
=(0.1,-0.026), is shown in Fig. 5. The first panel shows the
initial density field. The initial perturbation is not an exact
breather, so an adjustment takes place. Some of the radiated
waves move to the right relative to the fluid and hence propa-
gate away with velocity greater than the long-wave propaga-
tion speed. These have already left the domain by #=135.7
[Fig. 5(b)]. The largest radiated waves, centered at x=125 at
t=135.7, are mode-2 waves propagating to the left relative to
the fluid but much more slowly than the mode-1 breather.
The adjustment includes the generation of a small-amplitude
dispersive wave train. Because the background flow is mov-
ing to the right with the linear long-wave speed, this wave
train extends from its front at the initial location of the
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FIG. 5. Density contours showing the evolving wave field for a
case initialized with a weakly nonlinear breather with parameters
(p,q)=(0.1,-0.026). (a) Initial weakly nonlinear breather at r=0.
(b) 1=1p=135.7. (c) t=146.3=1y+0.57,,.. (d) r1=364.8 =15+ 107,,..
Here 7,,,=22.9 is the period of the simulated breather.

breather rightward to beyond the right boundary. A disper-
sive wave train of larger amplitude appears ahead and behind
the breather. This wave train grows in length behind (to the
right of) the breather [Figs. 5(b)-5(d)]. It is not known if this
is an indication that exact, fully nonlinear breathers do not
exist or if it is a consequence of a nonlinear interaction be-
tween the breather and the weak-dispersive wave train in
which it is embedded.

Comparisons of this case with weakly nonlinear theory
are made in Fig. 6. The parameters for the weakly nonlinear
breather were fixed by fitting the simulated amplitude of the
depression at the center of the breather at t=135.7, after the
initial adjustment, and a period of oscillation of over ten
oscillations. This fit yielded parameter values (p,q)
=(0.766,-0.024), indicating a decrease in magnitude of
about 23% and 8% from the values used in the initialization.
The comparison again shows an asymmetry in that after half
an oscillation [Fig. 6(c)], the simulated elevation is signifi-
cantly smaller than the initial depression. The size of the
initial adjustment is partly a consequence of the fact that the
initial velocity field is not taken from weakly nonlinear
theory.

V. CONCLUSION

Numerical solutions of the full nonlinear Euler equations
using an ideal, continuously stratified, smoothed three-layer
fluid have demonstrated the existence of fully nonlinear
breathers. There is some evidence to suggest they may
slowly radiate energy in the form of a trailing small-
amplitude dispersive wave train and hence they may not be
exact breathers. The breathers forming in the nonlinear simu-
lations are of moderate amplitude (approximately a third of
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FIG. 6. Comparison of the vertical displacement of the upper
pycnocline in the fully nonlinear breather (solid) and the weakly
nonlinear breather (dots) at six different times for the case initial-
ized with a weakly nonlinear breather. (a) t=t,=135.7. (b) ¢
=141.0=1y+0.237,,. (c) 1=148.0=1,+0.547,,. (d) r=153.3~1,
+0.777,5.. (€) t=158.6=1y+T,,. (f) 1=364.8=1y+107,,. Here
Tyee=22.9 is the breather oscillation period.

the upper and lower layer thicknesses) and their properties
are well described in the framework of the modified
Korteweg—de Vries equation. Results from two simulations
have been presented. The first, using the initial form (12),
resulted in a breather with few oscillations (small p) and
demonstrates that breathers can form from somewhat arbi-
trary conditions. Simulations using different initial ampli-
tudes a and widths L were done, showing that breathers are
only generated for a range of initial widths and amplitudes
(results not shown). For example, for (a,L)=(0.26,1.5) and
(a,L)=(0.08,3) only dispersive wave trains appear to be
generated, although a small undetectable breather may be
present. This is consistent with weakly nonlinear theory
which predicts a longer-wave envelope as the amplitude de-
creases. In both of these simulations the initial perturbation
may have been too narrow for the amplitude of the perturba-
tion. For (a,L)=(0.26,5) longer breathers with much longer
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periods of oscillation were generated. Breathers were also
generated using an initial profile consisting of two smoothed
rectangular boxes, similar to that used in theoretical studies
of weakly nonlinear breathers [18]. Initializing the model
with a density field based on a weakly nonlinear breather
with multiple oscillations resulted in a smaller-amplitude
breather with the same number of oscillations.

Some differences between weakly nonlinear and fully
nonlinear breathers were noted. For the first case, with p
=0.0285, a significant difference in the propagation speed
was observed in a reference frame moving with the linear
long-wave propagation speed, although relative to the fluid
the difference was small. In both cases the oscillations in the

PHYSICAL REVIEW E 75, 046306 (2007)

fully nonlinear breather were not symmetric in the sense that
the maximum downward displacement was not equal to the
maximum upward displacement half an oscillation period
later. Both of these differences imply that higher-order non-
linear effects are of some importance.
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